login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167346
Totally multiplicative sequence with a(p) = (p-1)*(p+2) = p^2+p-2 for prime p.
1
1, 4, 10, 16, 28, 40, 54, 64, 100, 112, 130, 160, 180, 216, 280, 256, 304, 400, 378, 448, 540, 520, 550, 640, 784, 720, 1000, 864, 868, 1120, 990, 1024, 1300, 1216, 1512, 1600, 1404, 1512, 1800, 1792, 1720, 2160, 1890, 2080, 2800, 2200, 2254, 2560, 2916, 3136
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = ((p-1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+2))^e(k).
a(n) = A003958(n) * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 3)) = 1.611922780552146990915794949248803526278171368254928942581015265238806543... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 2/p^4)) = 0.3809790887... . - Amiram Eldar, Nov 05 2022
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
f[p_, e_] := ((p - 1)*(p + 2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2022 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i, 1]-1)*(f[i, 1]+2))^f[i, 2]); } \\ Amiram Eldar, Nov 05 2022
CROSSREFS
Sequence in context: A343907 A191115 A073121 * A307274 A378708 A027430
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved