login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027429
Number of distinct products ijk with 0 <= i < j < k <= n.
4
0, 0, 1, 2, 5, 11, 17, 30, 43, 61, 76, 112, 127, 178, 207, 239, 275, 362, 397, 508, 555, 614, 678, 839, 884, 1005, 1093, 1199, 1278, 1530, 1591, 1882, 1999, 2134, 2276, 2433, 2519, 2922, 3097, 3279, 3392, 3885, 4015, 4564, 4751, 4939, 5187, 5841, 5988, 6423
OFFSET
0,4
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
FORMULA
a(n) = A027430(n) + 1. - T. D. Noe, Jan 16 2007
EXAMPLE
a(3) = 2 (0 and 6 being the only products) and a(4) = 5 (with products 0, 6, 8, 12 and 24).
MATHEMATICA
nn=50; prod=Table[0, {1+nn^3}]; t=Table[Do[prod[[1+i*j*k]]=1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1+n^3], 1], {n, 0, nn}] (* T. D. Noe, Jan 16 2007 *)
PROG
(Haskell)
import Data.List (nub)
a027429 n = length $ nub [i*j*k | k<-[2..n], j<-[1..k-1], i<-[0..j-1]]
-- Reinhard Zumkeller, Jan 01 2012
(Python)
from itertools import combinations as C
def a(n): return len(set(i*j*k for i, j, k in C(range(n+1), 3)))
print([a(n) for n in range(50)]) # Michael S. Branicky, May 28 2021
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected by T. D. Noe, Jan 16 2007
STATUS
approved