Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 28 2021 15:35:37
%S 0,0,1,2,5,11,17,30,43,61,76,112,127,178,207,239,275,362,397,508,555,
%T 614,678,839,884,1005,1093,1199,1278,1530,1591,1882,1999,2134,2276,
%U 2433,2519,2922,3097,3279,3392,3885,4015,4564,4751,4939,5187,5841,5988,6423
%N Number of distinct products ijk with 0 <= i < j < k <= n.
%H Michael S. Branicky, <a href="/A027429/b027429.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from T. D. Noe)
%F a(n) = A027430(n) + 1. - _T. D. Noe_, Jan 16 2007
%e a(3) = 2 (0 and 6 being the only products) and a(4) = 5 (with products 0, 6, 8, 12 and 24).
%t nn=50; prod=Table[0, {1+nn^3}]; t=Table[Do[prod[[1+i*j*k]]=1, {i,0,n}, {j,i+1,n}, {k,j+1,n}]; Count[Take[prod,1+n^3],1], {n,0,nn}] (* _T. D. Noe_, Jan 16 2007 *)
%o (Haskell)
%o import Data.List (nub)
%o a027429 n = length $ nub [i*j*k | k<-[2..n], j<-[1..k-1], i<-[0..j-1]]
%o -- _Reinhard Zumkeller_, Jan 01 2012
%o (Python)
%o from itertools import combinations as C
%o def a(n): return len(set(i*j*k for i, j, k in C(range(n+1), 3)))
%o print([a(n) for n in range(50)]) # _Michael S. Branicky_, May 28 2021
%Y Cf. A027425, A027426, A027427, A027430.
%K nonn
%O 0,4
%A _N. J. A. Sloane_
%E Corrected by _T. D. Noe_, Jan 16 2007