login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088434
Number of ways to write n as n = u*v*w with 1 <= u < v < w.
7
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 4, 0, 2, 1, 1, 1, 4, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 3, 1, 4, 0, 2, 1, 4, 0, 8, 0, 1, 2, 2, 1, 4, 0, 6, 1, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 2, 2, 4, 0, 4, 0, 4, 4, 1, 0, 8, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
OFFSET
1,12
COMMENTS
a(n)=0 iff n=1 or n prime or n prime^2: a(A000430(n)) = 0.
The integers a(n)+1 equal A045778(n) for n < 120 and differ at all n that admit factorization into 4 or more distinct factors, the smallest ones being n = 120 = 2*3*4*5, n = 144 = 2*3*4*6, n = 168 = 2*3*4*7, n = 180 = 2*3*5*6, ..., later continuing n = 312 = 2*3*4*13, n = 320 = 2*4*5*8, n = 324 = 2*3*6*9, n = 330 = 2*3*5*11, ... Coincidentally, A068350(5) to A068350(19) start this list. - R. J. Mathar, Jul 19 2007
LINKS
Antti Karttunen and Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 2048 terms from Antti Karttunen.)
EXAMPLE
n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6): therefore a(18)=2.
MATHEMATICA
Table[Length[Select[Cases[Subsets[Divisors[n], {3}], {x_, y_, z_}->x*y*z], #==n &]], {n, 102}] (* Jayanta Basu, May 23 2013 *)
PROG
(PARI) A088434(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 01 2003
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, Aug 24 2017
STATUS
approved