login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088432
Number of ways to write n as n = u*v*w with 1 <= u < v <= w.
6
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 7, 1, 3, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 4, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 3, 2, 1, 4, 0, 6, 2, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 3, 2, 6, 0, 4, 0, 4, 4, 1, 0, 9, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
OFFSET
1,12
LINKS
FORMULA
a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0, a(A002808(n)) > 0.
a(n) = 1 iff n has 3 or 4 divisors (A323644) (see examples). - Bernard Schott, Dec 13 2021
a(n) = 2 if n = p^2*q, p<q primes (A096156) or n = p^4 (A030514) (see examples). - Bernard Schott, Dec 16 2021
EXAMPLE
n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6), (2,3,3): therefore a(18)=3.
For n = p*q, p < q primes: n = 1 * p * q, so a(n) = 1.
For n = p^2, p prime: n = 1 * p * p, so a(n) = 1.
For n = p^3, p prime: n = 1 * p * p^2, so a(n) = 1.
For n = p*q^2, p < q < p^2: n = 1 * p * pq = 1* q * p^2, so a(n) = 2 (see n=12).
For n = p*q^2, p < p^2 < q: n = 1 * p * pq = 1 * p^2 * q, so a(n) = 2
For n = p^4, p prime: n = 1 * p * p^3 = 1 * p^2 * p^2, so a(n) = 2.
MATHEMATICA
a[n_] := Module[{s = 0}, Do[Do[Do[If[u v w == n, s++], {w, v, n}], {v, u + 1, n - 1}], {u, Divisors[n]}]; s];
Array[a, 120] (* Jean-François Alcover, Dec 10 2021, after Antti Karttunen *)
PROG
(PARI) A088432(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 01 2003
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, Aug 24 2017
STATUS
approved