login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122180
Number of ways to write n as n = x*y*z with 1 < x < y < z < n.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 1
OFFSET
1,48
COMMENTS
x,y,z are distinct proper factors of n. See A122181 for n such that a(n) > 0.
If n has at most five divisors then a(n) = 0. - David A. Corneth, Oct 24 2024
FORMULA
a(n) = A200214(n)/6. - Antti Karttunen, Jul 08 2017
EXAMPLE
a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
PROG
(PARI) for(n=1, 105, t=0; for(x=2, n-1, for(y=x+1, n-1, for(z=y+1, n-1, if(x*y*z==n, t++)))); print1(t, ", "))
(PARI) A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(x<n), for(y=x+1, n-1, for(z=y+1, n-1, if(x*y*z==n, s++))))); (s); }; \\ Just slightly optimized from the above. - Antti Karttunen, Jul 08 2017
(PARI) a(n) = {
my(d = divisors(n));
if(#d <= 5, return(0));
my(res = 0, q);
for(i = 2, #d,
q = d[#d + 1 - i];
if(d[i]^2 > q,
return(res)
);
for(j = i + 1, #d,
qj = q/d[j];
if(qj <= d[j],
next(2)
);
if(denominator(qj) == 1 && n % qj == 0,
res++
);
);
);
res
} \\ David A. Corneth, Oct 24 2024
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Aug 23 2006
STATUS
approved