login
A336917
Number of iterations of x -> A252463(x) needed before the result is deficient, when starting from x=n.
2
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 1, 0
OFFSET
1,12
LINKS
FORMULA
For all n >= 0, a(A007283(n)) = n.
EXAMPLE
For n = 945, the first odd abundant number, the iteration of A252463 proceeds as 945 -> 120 -> 60 -> 30 -> 15 -> 6 -> 3 -> 2 -> 1. From 945 to 30, all are nondeficient (sigma(k) >= 2k), and only at 15 we encounter the first deficient number, as sigma(15) = 24 < 2*15. Therefore a(945) = 4.
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A252463(n) = if(!(n%2), n/2, A064989(n));
A336917(n) = { my(i=0); while(sigma(n) >= (2*n), n = A252463(n); i++); (i); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 08 2020
STATUS
approved