login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200214
Ordered factorizations of n with 3 distinct parts, all > 1.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 18, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 18, 0, 0, 0, 0, 0, 6, 0, 12, 0, 0, 0, 18
OFFSET
1,24
LINKS
Benny Chor, Paul Lemke, Ziv Mador, On the number of ordered factorizations of natural numbers, Discrete Mathematics, Vol. 214[1], 2000, p. 123-133.
Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1), 2006.
FORMULA
a(n) = 6*A122180(n). - Antti Karttunen, Jul 08 2017
EXAMPLE
a(24) = 6 = card({{2,3,4}, {2,4,3}, {3,2,4}, {3,4,2}, {4,2,3}, {4,3,2}}).
a(64) = 6 = card({{2,4,8}, {2,8,4}, {4,2,8}, {4,8,2}, {8,2,4}, {8,4,2}}).
MATHEMATICA
OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of3 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 3 && Length[# // Union] == 3 &] // Union}, Length[Permutations /@ of3 // Flatten[#, 1] &]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
PROG
(PARI) A200214(n) = { my(s=0); fordiv(n, x, if((x>1)&&(x<n), for(y=x+1, n-1, for(z=y+1, n-1, if(x*y*z==n, s++))))); (6*s); }; \\ (After A122180, still quite naive) - Antti Karttunen, Jul 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 14 2011
EXTENSIONS
Description clarified, term a(0) removed and a second example added by Antti Karttunen, Jul 09 2017
STATUS
approved