Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 25 2024 09:36:14
%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
%T 0,1,0,0,0,1,0,1,0,0,0,0,0,2,0,0,0,0,0,1,0,1,0,0,0,3,0,0,0,1,0,1,0,0,
%U 0,1,0,3,0,0,0,0,0,1,0,2,0,0,0,3,0,0,0,1,0,3,0,0,0,0,0,4,0,0,0,1,0,1,0,1,1
%N Number of ways to write n as n = x*y*z with 1 < x < y < z < n.
%C x,y,z are distinct proper factors of n. See A122181 for n such that a(n) > 0.
%C If n has at most five divisors then a(n) = 0. - _David A. Corneth_, Oct 24 2024
%H David A. Corneth, <a href="/A122180/b122180.txt">Table of n, a(n) for n = 1..10000</a> (first 1001 terms from Antti Karttunen)
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = A200214(n)/6. - _Antti Karttunen_, Jul 08 2017
%e a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
%o (PARI) for(n=1,105, t=0; for(x=2,n-1, for(y=x+1,n-1, for(z=y+1,n-1, if(x*y*z==n, t++)))); print1(t,", "))
%o (PARI) A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(x<n),for(y=x+1, n-1, for(z=y+1, n-1, if(x*y*z==n, s++))))); (s); }; \\ Just slightly optimized from the above. - _Antti Karttunen_, Jul 08 2017
%o (PARI) a(n) = {
%o my(d = divisors(n));
%o if(#d <= 5, return(0));
%o my(res = 0, q);
%o for(i = 2, #d,
%o q = d[#d + 1 - i];
%o if(d[i]^2 > q,
%o return(res)
%o );
%o for(j = i + 1, #d,
%o qj = q/d[j];
%o if(qj <= d[j],
%o next(2)
%o );
%o if(denominator(qj) == 1 && n % qj == 0,
%o res++
%o );
%o );
%o );
%o res
%o } \\ _David A. Corneth_, Oct 24 2024
%Y Cf. A034836, A088432, A088433, A088434, A122179, A122181, A200214.
%K nonn
%O 1,48
%A _Rick L. Shepherd_, Aug 23 2006