Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 17 2021 20:37:03
%S 0,0,0,1,0,1,0,1,1,1,0,2,0,1,1,2,0,3,0,2,1,1,0,4,1,1,1,2,0,4,0,3,1,1,
%T 1,5,0,1,1,4,0,4,0,2,2,1,0,7,1,3,1,2,0,4,1,4,1,1,0,8,0,1,2,4,1,4,0,2,
%U 1,4,0,9,0,1,3,2,1,4,0,6,2,1,0,8,1,1,1,4,0,8,1,2,1,1,1,9,0,3,2,6,0,4,0,4,4,1,0,9,0,4,1,6,0,4,1,2,2,1,1,14
%N Number of ways to write n as n = u*v*w with 1 <= u < v <= w.
%H Antti Karttunen, <a href="/A088432/b088432.txt">Table of n, a(n) for n = 1..3003</a>
%F a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0, a(A002808(n)) > 0.
%F a(n) = 1 iff n has 3 or 4 divisors (A323644) (see examples). - _Bernard Schott_, Dec 13 2021
%F a(n) = 2 if n = p^2*q, p<q primes (A096156) or n = p^4 (A030514) (see examples). - _Bernard Schott_, Dec 16 2021
%e n=12: (1,2,6), (1,3,4): therefore a(12)=2;
%e n=18: (1,2,9), (1,3,6), (2,3,3): therefore a(18)=3.
%e For n = p*q, p < q primes: n = 1 * p * q, so a(n) = 1.
%e For n = p^2, p prime: n = 1 * p * p, so a(n) = 1.
%e For n = p^3, p prime: n = 1 * p * p^2, so a(n) = 1.
%e For n = p*q^2, p < q < p^2: n = 1 * p * pq = 1* q * p^2, so a(n) = 2 (see n=12).
%e For n = p*q^2, p < p^2 < q: n = 1 * p * pq = 1 * p^2 * q, so a(n) = 2
%e For n = p^4, p prime: n = 1 * p * p^3 = 1 * p^2 * p^2, so a(n) = 2.
%t a[n_] := Module[{s = 0}, Do[Do[Do[If[u v w == n, s++], {w, v, n}], {v, u + 1, n - 1}], {u, Divisors[n]}]; s];
%t Array[a, 120] (* _Jean-François Alcover_, Dec 10 2021, after _Antti Karttunen_ *)
%o (PARI) A088432(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v, n, if(u*v*w==n, s++)))); (s); }; \\ _Antti Karttunen_, Aug 24 2017
%Y Cf. A034836, A088433, A088434, A122179, A122180, A323644.
%K nonn
%O 1,12
%A _Reinhard Zumkeller_, Oct 01 2003
%E Data section extended to 120 terms by _Antti Karttunen_, Aug 24 2017