login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088435
1/2 + half of the (n+1)-st component of the continued fraction expansion of sum(k>=1,1/3^(2^k)).
2
3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3
OFFSET
1,1
COMMENTS
To construct the sequence use the rule : a(1)=3, then a(a(1)+a(2)+...+a(n)+1)=2+(-1)^n and fill in any undefined place with 2.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..8192 (computed from the b-file of A004200 provided by Harry J. Smith)
FORMULA
a(n) = (1/2) * (1+A004200(n+1)).
a(a(1)+a(2)+...+a(n)+1) = 2+(-1)^n.
EXAMPLE
Example to illustrate the comment : a(a(1)+1) = a(4) = 2+(-1)^1 = 1 and a(2), a(3) are undefined. The rule forces a(2) = a(3) = 2.
CROSSREFS
Cf. A088431.
Sequence in context: A251092 A175632 A226481 * A328630 A171900 A204257
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 08 2003
STATUS
approved