login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204257
Matrix given by f(i,j)=1+[(i+2j) mod 3], by antidiagonals.
2
1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2
OFFSET
1,2
EXAMPLE
Northwest corner:
1 3 2 1 3 2 1 3
2 1 3 2 1 3 2 1
3 2 1 3 2 1 3 2
1 3 2 1 3 2 1 3
2 1 3 2 1 3 2 1
3 2 1 3 2 1 3 2
MATHEMATICA
f[i_, j_] := 1 + Mod[i + 2 j, 3];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204257 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 20}] (* A204258 *)
CROSSREFS
Cf. A204258.
Sequence in context: A088435 A328630 A171900 * A074976 A329873 A068448
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 14 2012
STATUS
approved