login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226481
Table read by rows: run lengths in rows of A070950.
2
1, 3, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 6, 2, 2, 1, 3, 3, 5, 1, 2, 1, 4, 1, 2, 2, 1, 3, 3, 2, 2, 1, 4, 1, 1, 4, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 1, 4, 1, 1, 4, 2, 2, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 1, 2, 1, 4, 1, 2
OFFSET
0,2
COMMENTS
T(n,2*k) = numbers of consecutive ones in row n of A070950;
T(n,2*k+1) = numbers of consecutive zeros in row n of A070950;
sum(T(n,k): k = 0..A226482(n)-1) = 2*n+1.
LINKS
EXAMPLE
. Initial rows A070950, terms moved together
. 0: [1] 1
. 1: [3] 111
. 2: [2,2,1] 11001
. 3: [2,1,4] 1101111
. 4: [2,2,1,3,1] 110010001
. 5: [2,1,4,1,3] 11011110111
. 6: [2,2,1,4,1,2,1] 1100100001001
. 7: [2,1,4,2,6] 110111100111111
. 8: [2,2,1,3,3,5,1] 11001000111000001
. 9: [2,1,4,1,2,2,1,3,3] 1101111011001000111
. 10: [2,2,1,4,1,1,4,1,2,2,1] 110010000101111011001
. 11: [2,1,4,2,2,1,1,4,1,1,4], 11011110011010000101111
. 12: [2,2,1,3,3,2,2,2,2,1,1,3,1] 1100100011100110011010001
. 13: [2,1,4,1,2,2,3,1,3,2,2,1,3] 110111101100111011100110111
. 14: [2,2,1,4,1,1,3,3,1,2,3,2,1,2,1] 11001000010111000100111001001
. 15: [2,1,4,2,2,1,1,2,1,1,5,2,7] 1101111001101001011111001111111
. 16: [2,2,1,3,3,2,4,1,1,4,3,6,1] 110010001110011110100001110000001 .
PROG
(Haskell)
import Data.List (group)
a226481 n k = a226481_tabf !! n !! k
a226481_row n = a226481_tabf !! n
a226481_tabf = map (map length . group) a070950_tabf
CROSSREFS
Cf. A226482 (row lengths), A005408 (row sums).
Sequence in context: A090341 A251092 A175632 * A088435 A328630 A171900
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Jun 09 2013
STATUS
approved