The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205745 a(n) = card { d | d*p = n, d odd, p prime } 4
 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS Equivalently, a(n) is the number of prime divisors p|n such that n/p is odd. - Gus Wiseman, Jun 06 2018 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA O.g.f.: Sum_{p prime} x^p/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018 MATHEMATICA a[n_] := Sum[ Boole[ OddQ[d] && PrimeQ[n/d] ], {d, Divisors[n]} ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 27 2013 *) PROG (Sage) def A205745(n):     return sum((n//d) % 2 for d in divisors(n) if is_prime(d)) [A205745(n) for n in (1..105)] (PARI) a(n)=if(n%2, omega(n), n%4/2) \\ Charles R Greathouse IV, Jan 30 2012 (Haskell) a205745 n = sum \$ map ((`mod` 2) . (n `div`))    [p | p <- takeWhile (<= n) a000040_list, n `mod` p == 0] -- Reinhard Zumkeller, Jan 31 2012 CROSSREFS Cf. A000005, A000607, A001221, A008683, A010051, A068050, A083399, A088705, A106404, A305614. Sequence in context: A341677 A211159 A088434 * A333781 A243223 A034178 Adjacent sequences:  A205742 A205743 A205744 * A205746 A205747 A205748 KEYWORD nonn AUTHOR Peter Luschny, Jan 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 23:16 EDT 2021. Contains 346316 sequences. (Running on oeis4.)