OFFSET
1,2
COMMENTS
a(n) <= tau(n); a(n) = tau(n) iff n is prime or n=1 (A008578, A000040); a(n)=tau(n)-1 iff n is semiprime (A001358).
Number of noncomposite divisors of n, (cf. A008578). - Jaroslav Krizek, Nov 25 2009
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) is the number of maximal subsemigroups of the annular Jones monoid of degree n.
a(n) is the number of maximal subsemigroups of the monoid of orientation-preserving mappings on a set with n elements.
a(n) + 1 is the number of maximal subsemigroups of the monoid of orientation-preserving partial mappings on a set with n elements.
(End)
This is the restricted growth sequence transform of A001221 (and thus also of A007875, A034444, A082476, A292586 and many other sequences). This follows from the formula a(n) = 1+A001221(n), and from the fact that for any n, A001221(n) <= 1+A001221(k) for all k = 1..(n-1). A067003 gives the ordinal transform of A001221. See also A292582, A292583, A292585. - Antti Karttunen, Sep 25 2017
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [Wilf A. Wilson, Jul 21 2017]
FORMULA
a(n) = omega(n) + 1, where omega = A001221.
a(n) = A010553(A007947(n)) = A000005(A000005(A007947(n))) = tau_2(tau_2(rad(n))). - Enrique Pérez Herrero, Jun 25 2010
G.f.: x/(1 - x) + Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 29 2024
EXAMPLE
{1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2, 3, 4 and 6 divide not only 24, but also 8 or 12, therefore a(24) = 3.
{1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2 and 3 are noncomposites, therefore a(24) = 3. - Jaroslav Krizek, Nov 25 2009
MAPLE
A083399 := proc(n)
1+nops(numtheory[factorset](n)) ;
end proc:
seq(A083399(n), n=1..100) ; # R. J. Mathar, Sep 26 2017
MATHEMATICA
A083399[n_Integer]:=1+PrimeNu[n]; (* Enrique Pérez Herrero, Jun 25 2010 *)
Rest@ CoefficientList[ Series[(1/(1 - x)) + Sum[1/(1 - x^Prime[j]), {j, 200}], {x, 0, 111}], x] (* Robert G. Wilson v, Aug 16 2011 *)
PROG
(Magma) [(#(PrimeDivisors(n)))+1: n in [1..100]]; // Vincenzo Librandi, Feb 15 2015
(PARI) a(n)=#factor(n)~+1 \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a083399 = (+ 1) . a001221 -- Reinhard Zumkeller, Sep 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 12 2003
STATUS
approved