login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083399
Number of divisors of n that are not divisors of other divisors of n.
19
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4
OFFSET
1,2
COMMENTS
a(n) <= tau(n); a(n) = tau(n) iff n is prime or n=1 (A008578, A000040); a(n)=tau(n)-1 iff n is semiprime (A001358).
Number of noncomposite divisors of n, (cf. A008578). - Jaroslav Krizek, Nov 25 2009
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) is the number of maximal subsemigroups of the annular Jones monoid of degree n.
a(n) is the number of maximal subsemigroups of the monoid of orientation-preserving mappings on a set with n elements.
a(n) + 1 is the number of maximal subsemigroups of the monoid of orientation-preserving partial mappings on a set with n elements.
(End)
This is the restricted growth sequence transform of A001221 (and thus also of A007875, A034444, A082476, A292586 and many other sequences). This follows from the formula a(n) = 1+A001221(n), and from the fact that for any n, A001221(n) <= 1+A001221(k) for all k = 1..(n-1). A067003 gives the ordinal transform of A001221. See also A292582, A292583, A292585. - Antti Karttunen, Sep 25 2017
LINKS
James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [Wilf A. Wilson, Jul 21 2017]
FORMULA
a(n) = omega(n) + 1, where omega = A001221.
a(n) = tau(n) - A055212(n) = A000005(n)-A055212(n).
a(n) = A000005(n) - A033273(n) + 1. - Jaroslav Krizek, Nov 25 2009
a(n) = A010553(A007947(n)) = A000005(A000005(A007947(n))) = tau_2(tau_2(rad(n))). - Enrique Pérez Herrero, Jun 25 2010
G.f.: x/(1 - x) + Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 29 2024
EXAMPLE
{1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2, 3, 4 and 6 divide not only 24, but also 8 or 12, therefore a(24) = 3.
{1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2 and 3 are noncomposites, therefore a(24) = 3. - Jaroslav Krizek, Nov 25 2009
MAPLE
A083399 := proc(n)
1+nops(numtheory[factorset](n)) ;
end proc:
seq(A083399(n), n=1..100) ; # R. J. Mathar, Sep 26 2017
MATHEMATICA
A083399[n_Integer]:=1+PrimeNu[n]; (* Enrique Pérez Herrero, Jun 25 2010 *)
Rest@ CoefficientList[ Series[(1/(1 - x)) + Sum[1/(1 - x^Prime[j]), {j, 200}], {x, 0, 111}], x] (* Robert G. Wilson v, Aug 16 2011 *)
PROG
(Magma) [(#(PrimeDivisors(n)))+1: n in [1..100]]; // Vincenzo Librandi, Feb 15 2015
(PARI) a(n)=#factor(n)~+1 \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a083399 = (+ 1) . a001221 -- Reinhard Zumkeller, Sep 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 12 2003
STATUS
approved