login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n that are not divisors of other divisors of n.
19

%I #58 Sep 29 2024 02:53:53

%S 1,2,2,2,2,3,2,2,2,3,2,3,2,3,3,2,2,3,2,3,3,3,2,3,2,3,2,3,2,4,2,2,3,3,

%T 3,3,2,3,3,3,2,4,2,3,3,3,2,3,2,3,3,3,2,3,3,3,3,3,2,4,2,3,3,2,3,4,2,3,

%U 3,4,2,3,2,3,3,3,3,4,2,3,2,3,2,4,3,3,3,3,2,4,3,3,3,3,3,3,2,3,3,3,2,4

%N Number of divisors of n that are not divisors of other divisors of n.

%C a(n) <= tau(n); a(n) = tau(n) iff n is prime or n=1 (A008578, A000040); a(n)=tau(n)-1 iff n is semiprime (A001358).

%C Number of noncomposite divisors of n, (cf. A008578). - _Jaroslav Krizek_, Nov 25 2009

%C From _Wilf A. Wilson_, Jul 21 2017: (Start)

%C a(n) is the number of maximal subsemigroups of the annular Jones monoid of degree n.

%C a(n) is the number of maximal subsemigroups of the monoid of orientation-preserving mappings on a set with n elements.

%C a(n) + 1 is the number of maximal subsemigroups of the monoid of orientation-preserving partial mappings on a set with n elements.

%C (End)

%C This is the restricted growth sequence transform of A001221 (and thus also of A007875, A034444, A082476, A292586 and many other sequences). This follows from the formula a(n) = 1+A001221(n), and from the fact that for any n, A001221(n) <= 1+A001221(k) for all k = 1..(n-1). A067003 gives the ordinal transform of A001221. See also A292582, A292583, A292585. - _Antti Karttunen_, Sep 25 2017

%H Reinhard Zumkeller, <a href="/A083399/b083399.txt">Table of n, a(n) for n = 1..10000</a>

%H James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, <a href="https://arxiv.org/abs/1706.04967">Maximal subsemigroups of finite transformation and partition monoids</a>, arXiv:1706.04967 [math.GR], 2017. [_Wilf A. Wilson_, Jul 21 2017]

%F a(n) = omega(n) + 1, where omega = A001221.

%F a(n) = tau(n) - A055212(n) = A000005(n)-A055212(n).

%F a(n) = A000005(n) - A033273(n) + 1. - _Jaroslav Krizek_, Nov 25 2009

%F a(n) = A010553(A007947(n)) = A000005(A000005(A007947(n))) = tau_2(tau_2(rad(n))). - _Enrique Pérez Herrero_, Jun 25 2010

%F G.f.: x/(1 - x) + Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - _Ilya Gutkovskiy_, Mar 21 2017

%F Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1) + O(n/log(n)), where B is Mertens's constant (A077761). - _Amiram Eldar_, Sep 29 2024

%e {1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2, 3, 4 and 6 divide not only 24, but also 8 or 12, therefore a(24) = 3.

%e {1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2 and 3 are noncomposites, therefore a(24) = 3. - _Jaroslav Krizek_, Nov 25 2009

%p A083399 := proc(n)

%p 1+nops(numtheory[factorset](n)) ;

%p end proc:

%p seq(A083399(n),n=1..100) ; # _R. J. Mathar_, Sep 26 2017

%t A083399[n_Integer]:=1+PrimeNu[n]; (* _Enrique Pérez Herrero_, Jun 25 2010 *)

%t Rest@ CoefficientList[ Series[(1/(1 - x)) + Sum[1/(1 - x^Prime[j]), {j, 200}], {x, 0, 111}], x] (* _Robert G. Wilson v_, Aug 16 2011 *)

%o (Magma) [(#(PrimeDivisors(n)))+1: n in [1..100]]; // _Vincenzo Librandi_, Feb 15 2015

%o (PARI) a(n)=#factor(n)~+1 \\ _Charles R Greathouse IV_, Sep 14 2015

%o (Haskell)

%o a083399 = (+ 1) . a001221 -- _Reinhard Zumkeller_, Sep 14 2015

%Y Cf. A000005, A001221, A067003, A055212, A077761.

%K nonn,easy

%O 1,2

%A _Reinhard Zumkeller_, Jun 12 2003