login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305614
Expansion of Sum_{p prime} x^p/(1 + x^p).
14
0, 0, 1, 1, -1, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 2, -1, 1, 0, 1, -2, 2, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -2, 2, 0, 1, -2, 1, 0, 2, -2, 1, 0, 2, -2, 2, 0, 1, -3, 1, 0, 2, -1, 2, -1, 1, -2, 2, -1, 1, -2, 1, 0, 2, -2, 2, -1
OFFSET
0,13
COMMENTS
a(n) is the number of prime divisors p|n such that n/p is odd, minus the number of prime divisors p|n such that n/p is even.
LINKS
FORMULA
a(n) = -Sum_{p|n prime} (-1)^(n/p).
From Robert Israel, Jun 07 2018: (Start)
If n is odd, a(n) = A001221(n).
If n == 2 (mod 4), a(n) = 2 - A001221(n).
If n == 0 (mod 4) and n > 0, a(n) = -A001221(n). (End)
L.g.f.: log(Product_{k>=1} (1 + x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
EXAMPLE
The prime divisors of 12 are 2, 3. We see that 12/2 = 6, 12/3 = 4. None of those are odd, but both of them are even, so a(12) = -2.
The prime divisors of 30 are {2,3,5} with quotients {15,10,6}. One of these is odd and two are even, so a(30) = 1 - 2 = -1.
MAPLE
a:= n-> -add((-1)^(n/i[1]), i=ifactors(n)[2]):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 07 2018
# Alternative
N:= 1000: # to get a(0)..a(N)
V:= Vector(N):
p:= 1:
do
p:= nextprime(p);
if p > N then break fi;
R:= [seq(i, i=p..N, p)];
W:= <seq((-1)^(n+1), n=1..nops(R))>;
V[R]:= V[R]+W;
od:
[0, seq(V[i], i=1..N)]; # Robert Israel, Jun 07 2018
MATHEMATICA
Table[Sum[If[PrimeQ[d], (-1)^(n/d - 1), 0], {d, Divisors[n]}], {n, 30}]
KEYWORD
sign
AUTHOR
Gus Wiseman, Jun 06 2018
STATUS
approved