login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190676
[(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,0) and [ ]=floor.
5
2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1
OFFSET
1,1
COMMENTS
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,1): A190427-A190430
(sqrt(2),2,0): A190480-A190482
(sqrt(2),2,1): A190483-A190486
(sqrt(2),3,0): A190487-A190490
(sqrt(2),3,1): A190491-A190495
(sqrt(2),3,2): A190496-A190500
(sqrt(2),4,c): A190544-A190566
FORMULA
a(n)=[3n*sqrt(3)]-3[n*sqrt(3)].
MATHEMATICA
r = Sqrt[3]; b = 3; c = 0;
f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
t = Table[f[n], {n, 1, 200}] (* A190676 *)
Flatten[Position[t, 0]] (* A190677 *)
Flatten[Position[t, 1]] (* A190678 *)
Flatten[Position[t, 2]] (* A190679 *)
Table[Floor[3n Sqrt[3]]-3Floor[n Sqrt[3]], {n, 140}] (* Harvey P. Dale, Mar 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 16 2011
EXTENSIONS
Definition (Name) corrected by Harvey P. Dale, Mar 24 2013
STATUS
approved