login
[(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,0) and [ ]=floor.
5

%I #9 Mar 25 2013 11:57:33

%S 2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,

%T 1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,

%U 1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1

%N [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,0) and [ ]=floor.

%C Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.

%C Examples:

%C (golden ratio,2,1): A190427-A190430

%C (sqrt(2),2,0): A190480-A190482

%C (sqrt(2),2,1): A190483-A190486

%C (sqrt(2),3,0): A190487-A190490

%C (sqrt(2),3,1): A190491-A190495

%C (sqrt(2),3,2): A190496-A190500

%C (sqrt(2),4,c): A190544-A190566

%F a(n)=[3n*sqrt(3)]-3[n*sqrt(3)].

%t r = Sqrt[3]; b = 3; c = 0;

%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];

%t t = Table[f[n], {n, 1, 200}] (* A190676 *)

%t Flatten[Position[t, 0]] (* A190677 *)

%t Flatten[Position[t, 1]] (* A190678 *)

%t Flatten[Position[t, 2]] (* A190679 *)

%t Table[Floor[3n Sqrt[3]]-3Floor[n Sqrt[3]],{n,140}] (* _Harvey P. Dale_, Mar 24 2013 *)

%Y Cf. A190677, A190678, A190679, A022838.

%K nonn

%O 1,1

%A _Clark Kimberling_, May 16 2011

%E Definition (Name) corrected by _Harvey P. Dale_, Mar 24 2013