%I #9 Mar 25 2013 11:57:33
%S 2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,
%T 1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,
%U 1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1,1,0,2,1,0,0,2,1,0,2,2,1,0,2,1
%N [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),3,0) and [ ]=floor.
%C Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
%C Examples:
%C (golden ratio,2,1): A190427-A190430
%C (sqrt(2),2,0): A190480-A190482
%C (sqrt(2),2,1): A190483-A190486
%C (sqrt(2),3,0): A190487-A190490
%C (sqrt(2),3,1): A190491-A190495
%C (sqrt(2),3,2): A190496-A190500
%C (sqrt(2),4,c): A190544-A190566
%F a(n)=[3n*sqrt(3)]-3[n*sqrt(3)].
%t r = Sqrt[3]; b = 3; c = 0;
%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t t = Table[f[n], {n, 1, 200}] (* A190676 *)
%t Flatten[Position[t, 0]] (* A190677 *)
%t Flatten[Position[t, 1]] (* A190678 *)
%t Flatten[Position[t, 2]] (* A190679 *)
%t Table[Floor[3n Sqrt[3]]-3Floor[n Sqrt[3]],{n,140}] (* _Harvey P. Dale_, Mar 24 2013 *)
%Y Cf. A190677, A190678, A190679, A022838.
%K nonn
%O 1,1
%A _Clark Kimberling_, May 16 2011
%E Definition (Name) corrected by _Harvey P. Dale_, Mar 24 2013