login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305612
Expansion of 1/2 * (((1 + 2*x)/(1 - 2*x))^(3/2) - 1).
1
0, 3, 9, 22, 51, 114, 250, 540, 1155, 2450, 5166, 10836, 22638, 47124, 97812, 202488, 418275, 862290, 1774630, 3646500, 7482618, 15334748, 31391724, 64194312, 131151566, 267711444, 546031500, 1112864200, 2266587900, 4613409000, 9384609960, 19079454960
OFFSET
0,2
COMMENTS
Let 1/2 * (((1 + k*x)/(1 - k*x))^(m/k) - 1) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.
LINKS
FORMULA
n*a(n) = 6*a(n-1) + 4*(n-2)*a(n-2) for n > 1.
a(n) = A305031(n)/2 for n > 0.
MAPLE
seq(coeff(series((1/2)*(((1+2*x)/(1-2*x))^(3/2)-1), x, n+1), x, n), n=0..35); # Muniru A Asiru, Jun 06 2018
MATHEMATICA
CoefficientList[Series[((((1+2x)/(1-2x))^(3/2))-1)/2, {x, 0, 40}], x] (* Harvey P. Dale, Nov 04 2020 *)
CROSSREFS
1/2 * (((1 + 2*x)/(1 - 2*x))^(m/2) - 1): A001405(n-1) (m=1), this sequence (m=3).
Cf. A305031.
Sequence in context: A001628 A099166 A222083 * A202882 A350105 A336511
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 06 2018
STATUS
approved