login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305609
Expansion of 1/2 * (((1 + 8*x)/(1 - 8*x))^(1/8) - 1).
2
0, 1, 1, 22, 43, 862, 2122, 40012, 111859, 2016566, 6130494, 106709364, 344744574, 5831760108, 19744810932, 326100935448, 1146472029123, 18549990711078, 67282629958006, 1069313429135204, 3982410828494666, 62297616737399876, 237367322452180556
OFFSET
0,4
COMMENTS
Let 1/2 * (((1 + k*x)/(1 - k*x))^(m/k) - 1) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.
LINKS
FORMULA
n*a(n) = 2*a(n-1) + 64*(n-2)*a(n-2) for n > 1.
a(n) = A303538(n)/2 for n > 0.
MAPLE
seq(coeff(series((1/2)*(((1+8*x)/(1-8*x))^(1/8)-1), x, 30), x, n), n=0..25); # Muniru A Asiru, Jun 06 2018
CROSSREFS
1/2 * (((1 + k*x)/(1 - k*x))^(1/k) - 1): A001405(n-1) (k=2), A305608 (k=4), this sequence (k=8).
Cf. A303538.
Sequence in context: A086679 A019508 A166058 * A123799 A138842 A040462
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 06 2018
STATUS
approved