login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305607
Decimal expansion of (Pi/log(2))^2/12.
3
1, 7, 1, 1, 8, 5, 7, 3, 7, 1, 2, 6, 8, 6, 5, 1, 6, 9, 8, 7, 4, 6, 7, 6, 2, 8, 3, 8, 7, 8, 2, 4, 7, 7, 8, 3, 6, 2, 0, 1, 5, 4, 3, 5, 1, 1, 6, 2, 4, 4, 6, 7, 8, 6, 3, 6, 4, 2, 0, 8, 7, 3, 3, 0, 2, 1, 1, 0, 7, 6, 0, 8, 4, 9, 6, 1, 8, 6, 9, 7, 8, 2, 6, 2, 0, 2, 6, 9, 5, 9, 2, 7, 4, 5, 2, 3, 0, 3, 9, 4, 4
OFFSET
1,2
COMMENTS
The constant represents the mean information density per continued fraction term for continued fraction terms satisfying the Gauss-Kuzmin distribution in bits per term, i.e., for a finite continued fraction (fractional, n/d), the denominator d has approximately (1/12)*(Pi/log(2))^2*t binary digits are obtained correctly, where t is the number of terms.
For infinite continued fractions satisfying Gauss-Kuzmin distribution, about 2*(1/12)*(Pi/log(2))^2*t binary digits are obtained correctly from the first t continued fraction terms.
Note that A240995 represents the mean information density in decimal digits per term.
The denominator of the k-th convergent obtained from a continued fraction satisfying the Gauss-Kuzmin distribution will tend to exp(k*A100199), A100199 being the inverse of Lévy's constant; i.e., in binary digits, the k-th convergent tends to A100199/log(2) binary digits.
FORMULA
Equals A100199/log(2).
Equals A240995*log(10)/log(2).
EXAMPLE
1.71185737126865169874676283878247783620154351162446786...
MATHEMATICA
RealDigits[(Pi/Log@2)^2/12, 10, 111][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
PROG
(PARI) (Pi/log(2))^2/12 \\ Michel Marcus, Jul 03 2018
CROSSREFS
Sequence in context: A336459 A367764 A174095 * A229779 A050179 A358450
KEYWORD
nonn,cons,easy
AUTHOR
A.H.M. Smeets, Jun 05 2018
STATUS
approved