login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358450
Decimal expansion of 2*EllipticK(i) - EllipticE(i), reciprocal of A088375.
0
7, 1, 1, 9, 5, 8, 6, 5, 9, 7, 7, 8, 2, 6, 3, 8, 0, 1, 5, 1, 2, 4, 5, 8, 5, 4, 8, 8, 0, 5, 3, 9, 7, 7, 6, 7, 7, 2, 7, 7, 7, 1, 1, 4, 4, 1, 0, 7, 9, 8, 5, 8, 0, 2, 2, 7, 6, 5, 7, 3, 3, 7, 5, 4, 2, 7, 1, 9, 2, 6, 8, 6, 4, 6, 3, 2, 4, 9, 2, 8, 9, 6, 9, 7, 2, 0
OFFSET
0,1
FORMULA
Equals (a/b - b/a)*b^(1/2), where a = sqrt(2)*Gamma(5/4)^2 and b = Pi/4.
Equals sqrt(2) * (EllipticK(sqrt(2)/2) - EllipticE(sqrt(2)/2)).
Equals Integral_{x=0..Pi/2} cos(x)^2 / sqrt(1 + sin(x)^2).
EXAMPLE
0.7119586597782638015124585488053977677277711441...
MAPLE
Digits := 100: a := sqrt(2)*GAMMA(5/4)^2: b := Pi/4: evalf((a/b - b/a)*b^(1/2), Digits)*10^90: ListTools:-Reverse(convert(floor(%), base, 10));
MATHEMATICA
With[{a = Sqrt[2]*Gamma[5/4]^2, b = Pi/4}, RealDigits[(a/b - b/a)*b^(1/2), 10, 120][[1]]] (* Amiram Eldar, Nov 19 2022 *)
CROSSREFS
Cf. A088375.
Sequence in context: A305607 A229779 A050179 * A183352 A217510 A273506
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Nov 19 2022
STATUS
approved