login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358451
Inverse Euler transform of the Riordan numbers, (A005043).
17
1, 0, 1, 1, 2, 5, 11, 28, 68, 174, 445, 1166, 3068, 8190, 21994, 59585, 162360, 445145, 1226376, 3394654, 9434260, 26317865, 73661588, 206809307, 582255448, 1643536725, 4650250254, 13186484316, 37468566744, 106666821221, 304200399505, 868977304140, 2486163857424
OFFSET
0,5
FORMULA
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 15 2024
MAPLE
EulerInvTransform := proc(f) local c, b;
c := proc(n) option remember;
ifelse(n = 0, f(0), f(n) - b(n, n-1)) end:
b := proc(n, k) option remember;
if n = 0 then return 1 elif k < 1 then return 0 fi;
add(binomial(c(k) + j - 1, j)*b(n-k*j, k-1), j=0..n/k) end:
c end:
a := EulerInvTransform(A005043): seq(a(n), n = 0..32);
MATHEMATICA
EulerInvTransform[seq_List] := Module[{final = {}}, Do[AppendTo[final, i*seq[[i]] - Sum[final[[d]]*seq[[i-d]], {d, i-1}]], {i, Length[seq]}]; Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq] }]];
A005043[n_] := A005043[n] = If[n <= 1, 1-n, (n-1)*(2*A005043[n-1] + 3*A005043[n-2])/(n+1)];
Join[{1}, EulerInvTransform[Array[A005043, 32]]] (* Jean-François Alcover, Jun 15 2024 *)
PROG
(SageMath)
z = PowerSeriesRing(ZZ, 'z').gen().O(33)
g = 1 + z + sqrt(1 - 2*z - 3*z**2)
f = -z * g.derivative() / g
print([1] + [sum(moebius(n // d) * f[d]
for d in divisors(n)) // n for n in range(1, 33)])
(Python)
from typing import Callable
from functools import cache
from math import comb
# Define 'binomial' for compatibility with Maple.
def binomial(n: int, k: int) -> int:
if 0 <= k <= n: return comb(n, k)
if k <= n < 0: return comb(-k-1, n-k)*(-1)**(n-k)
if n < 0 <= k: return comb(-n+k-1, k)*(-1)**k
return 0
def EulerInvTransform(f: Callable) -> Callable:
@cache
def h(n: int, k: int) -> int:
if n == 0: return 1
if k < 1: return 0
return sum(binomial(b(k)+j-1, j) * h(n-k*j, k-1)
for j in range(1 + n // k))
@cache
def b(n: int) -> int:
if n == 0: return f(0)
return f(n) - h(n, n - 1)
return b
a = EulerInvTransform(A005043)
print([a(n) for n in range(33)])
CROSSREFS
Cf. A005043.
Sequence in context: A325916 A257790 A174145 * A124016 A121398 A359181
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 20 2022
STATUS
approved