Definition
If two integer sequences
and
are related by[1]
![{\displaystyle 1+\sum _{n=1}^{\infty }b_{n}x^{n}=\prod _{i=1}^{\infty }{\frac {1}{(1-x^{i})^{a_{i}}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/832ed82d1d631c506290fc1e4ca91b62d8ec2a1f)
or, in terms of generating functions
and
,
then
is said to be the Euler transform of
.
Combinatorial interpretation
If
is a nonnegative integer sequence with Euler transform
then
is the number of weakly increasing sequences of pairs
such that
and
for all
.
For example, the third part of the Euler transform of {1,2,4,8,...} is A034691(3) = 7, corresponding to the following 7 sequences of pairs.
![{\displaystyle ((1,1),(1,1),(1,1))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3de054bcece93b25026870baa0ee2e538ee398ee)
![{\displaystyle ((1,1),(2,1))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/22b5524b6c4e442d5575c5281abc3b35e7056d8a)
![{\displaystyle ((1,1),(2,2))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/8132ecf46156b371418096e0be61992466fbbf61)
![{\displaystyle ((3,1))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/5f79f1c65703c2e49bce2caec5295be6e988ac28)
![{\displaystyle ((3,2))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3b40175d32924ba225b22dd56fc915813d71d4ef)
![{\displaystyle ((3,3))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/758a02b6695137c56634d6dfb3ed72c990cb3fad)
![{\displaystyle ((3,4))}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/2a83f38fa8e5ee9993fdd07d308b924b69d9aec5)
Notes
- ↑ Sloane and Plouffe 1995, pp. 20-21.
References
- Sloane, N. J. A. and Plouffe, S., The Encyclopedia of Integer Sequences, San Diego, CA, Academic Press, pp. 20-21, 1995.
External links
- Eric W. Weisstein, Euler Transform, from MathWorld — A Wolfram Web Resource..