|
|
A358447
|
|
Numbers k such that there exist primes p, q, r, s with k = p + q = r + s = p*q - r*s.
|
|
1
|
|
|
16, 24, 96, 120, 240, 264, 504, 744, 840, 1080, 1104, 1416, 1440, 1680, 2256, 2280, 2520, 2760, 2856, 3120, 3264, 3456, 3576, 3696, 3864, 3960, 4296, 4440, 4536, 4584, 4800, 5040, 5496, 5640, 5880, 6720, 6960, 7224, 7800, 8280, 8904, 8976, 9240, 9480, 9984, 10080, 10296, 10656, 10824, 10920
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms are divisible by 8.
|
|
LINKS
|
|
|
EXAMPLE
|
a(3) = 96 is a term because 96 = 43 + 53 = 37 + 59 = 43*53 - 37*59 with 43, 53, 37 and 59 prime.
|
|
MAPLE
|
filter:= proc(n) local s, t;
for s in numtheory:-divisors(n/4) do
t:= n/(4*s);
if andmap(isprime, [2*s*t+s-t, 2*s*t-s+t, 2*s*t-s-t, 2*s*t+s+t]) then
return true
fi
od;
false
end proc:
select(filter, [seq(i, i=8..20000, 8)]);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|