login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166629
Totally multiplicative sequence with a(p) = 8p for prime p.
1
1, 16, 24, 256, 40, 384, 56, 4096, 576, 640, 88, 6144, 104, 896, 960, 65536, 136, 9216, 152, 10240, 1344, 1408, 184, 98304, 1600, 1664, 13824, 14336, 232, 15360, 248, 1048576, 2112, 2176, 2240, 147456, 296, 2432, 2496, 163840, 328, 21504, 344, 22528
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (8p)^e.
If n = Product p(k)^e(k) then a(n) = Product (8*p(k))^e(k).
a(n) = n * A165829(n) = n * 8^bigomega(n) = n * 8^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 8 * p^(1 - s)). - Ilya Gutkovskiy, Oct 30 2019
MATHEMATICA
Table[n*8^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, May 19 2016 *)
PROG
(PARI) a(n) = n*8^bigomega(n); \\ Michel Marcus, Oct 30 2019
CROSSREFS
Sequence in context: A335296 A358447 A120468 * A066261 A256526 A243914
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved