login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166632
Totally multiplicative sequence with a(p) = 2*(p-1) for prime p.
1
1, 2, 4, 4, 8, 8, 12, 8, 16, 16, 20, 16, 24, 24, 32, 16, 32, 32, 36, 32, 48, 40, 44, 32, 64, 48, 64, 48, 56, 64, 60, 32, 80, 64, 96, 64, 72, 72, 96, 64, 80, 96, 84, 80, 128, 88, 92, 64, 144, 128
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (2*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-1)^e(k).
a(n) = A061142(n) * A003958(n) = 2^bigomega(n) * A003958(n) = 2^A001222(n) * A003958(n).
Dirichlet g.f.: Product_{p prime} 1/(1 - 2*(p-1)*p^(-s)). - Robert Israel, May 19 2016
From Vaclav Kotesovec, Mar 08 2023: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - (2 - p^(2-s))/(p^s-2*p+2)).
Let f(s) = Product_{p prime} (1 - (2 - p^(2-s)) / (p^s - 2*p + 2)).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - 2/(p^2 - 2*p + 2)) = 0.353804459718477500968617797456682002952375753701841967763205003892191...,
f'(2) = f(2) * Sum_{p prime} 2*log(p) / ((p-1) * (p^2 - 2*p + 2)) = 0.350193097012820163529213089258238034020398107720137317340667886409682...
and gamma is the Euler-Mascheroni constant A001620. (End)
MAPLE
f:= proc(n) local f;
mul((2*(f[1]-1))^f[2], f = ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, May 19 2016
MATHEMATICA
DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*2^(PrimeOmega[m]), {m, 1, 100}](* G. C. Greubel, May 19 2016, based on A003958 *)
f[p_, e_] := (2*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*(p-1)*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 08 2023
CROSSREFS
KEYWORD
nonn,easy,mult,look
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved