login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248692 Fully multiplicative with a(prime(i)) = 2^i; If n = product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime A000040(k) and c_k >= 0 then a(n) = product_{k >= 1} 2^(k*c_k). 4
1, 2, 4, 4, 8, 8, 16, 8, 16, 16, 32, 16, 64, 32, 32, 16, 128, 32, 256, 32, 64, 64, 512, 32, 64, 128, 64, 64, 1024, 64, 2048, 32, 128, 256, 128, 64, 4096, 512, 256, 64, 8192, 128, 16384, 128, 128, 1024, 32768, 64, 256, 128, 512, 256, 65536, 128, 256, 128, 1024, 2048, 131072, 128, 262144, 4096, 256, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equally, if n = p_i * p_j * ... * p_k, where p_i, p_j, ..., p_k are the primes A000040(i), A000040(j), ..., A000040(k) in the prime factorization of n (indices i, j, ..., k not necessarily distinct), then a(n) = 2^i * 2^j * 2^k.

a(1) = 1 (empty product).

Fully multiplicative with a(prime(i)) = 2^i.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..2048

FORMULA

a(n) = 2^A056239(n) = A000079(A056239(n)).

Other identities. For all n >= 1:

a(A122111(n)) = a(n).

a(A000040(n)) = A000079(n).

For all n >= 0:

a(A000079(n)) = A000079(n).

a(n) = Product_{d|n} 2^A297109(d). - Antti Karttunen, Feb 01 2021

MAPLE

a:= n-> mul((2^numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):

seq(a(n), n=1..64);  # Alois P. Heinz, Jan 14 2021

PROG

(MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)

(require 'factor)

(define (A248692v2 n) (apply * (map A000079 (map A049084 (factor n)))))

;; Alternatively:

(define (A248692 n) (A000079 (A056239 n)))

(PARI) A248692(n) = if(1==n, n, my(f=factor(n)); for(i=1, #f~, f[i, 1] = 2^primepi(f[i, 1])); factorback(f)); \\ Antti Karttunen, Feb 01 2021

CROSSREFS

Cf. A000040, A000079, A003961, A003965, A048675, A056239, A061142, A122111, A297109.

Sequence in context: A349131 A166632 A116596 * A048656 A107848 A285273

Adjacent sequences:  A248689 A248690 A248691 * A248693 A248694 A248695

KEYWORD

nonn,mult

AUTHOR

Antti Karttunen, Oct 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 16:42 EST 2021. Contains 349413 sequences. (Running on oeis4.)