OFFSET
6,1
COMMENTS
Let t(n) = n!/p(n). Then t(n) is an integer for n = 1..15, and max{t(n), n = 1..infinity}} = t(23) = 77452.802... . It appears that t(n) < 1/10 for n > 35 and t(n) < 10^(-6) for n > 45.
EXAMPLE
292499.27874312855145001560941744240132899839310229312180509413296869258837339...
MAPLE
evalf(sum(n!/product(floor(n/k)!, k=2..n), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
MATHEMATICA
u = N[Sum[n!/Product[Floor[n/k]!, {k, 2, n}], {n, 1, 200}], 130]
RealDigits[u] (* A248695 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Oct 13 2014
STATUS
approved