login
A376911
Decimal expansion of Product_{k=1..5} Gamma(k/3).
3
2, 9, 2, 4, 3, 2, 7, 2, 2, 9, 9, 5, 2, 4, 0, 2, 5, 5, 3, 7, 2, 8, 7, 3, 8, 0, 7, 4, 0, 3, 7, 3, 7, 8, 1, 1, 4, 1, 6, 7, 0, 2, 2, 0, 4, 6, 5, 8, 9, 8, 6, 3, 8, 8, 9, 3, 0, 7, 6, 5, 9, 0, 7, 4, 4, 3, 5, 5, 6, 8, 8, 3, 6, 2, 7, 2, 3, 5, 7, 1, 0, 9, 0, 3, 7, 5, 6, 2, 4, 8
OFFSET
1,1
FORMULA
Equals Product_{k=1..6} Gamma(k/3) = (8/27)*Pi^2 = (8/27)*A002388 (cf. eqs. 87 and 88 in Weisstein link).
Equals 2*A214549. - Hugo Pfoertner, Oct 11 2024
EXAMPLE
2.9243272299524025537287380740373781141670220...
MATHEMATICA
First[RealDigits[8/27*Pi^2, 10, 100]]
CROSSREFS
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376912 (m = 7), A376913 (m = 8).
Sequence in context: A281334 A010597 A245253 * A153460 A342209 A248695
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Oct 11 2024
STATUS
approved