login
A376859
Decimal expansion of Product_{k=1..4} Gamma(k/3).
3
3, 2, 3, 9, 3, 7, 1, 3, 4, 0, 7, 1, 6, 9, 7, 3, 2, 0, 6, 1, 8, 0, 0, 6, 6, 0, 1, 1, 6, 3, 0, 7, 9, 4, 8, 9, 8, 0, 1, 2, 1, 3, 7, 8, 2, 4, 5, 5, 4, 5, 1, 2, 5, 1, 0, 9, 1, 4, 4, 2, 6, 6, 9, 4, 0, 0, 1, 7, 7, 7, 1, 2, 5, 6, 9, 6, 7, 7, 0, 0, 6, 5, 8, 8, 3, 9, 0, 1, 1, 8
OFFSET
1,1
FORMULA
Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).
EXAMPLE
3.23937134071697320618006601163079489801213782...
MATHEMATICA
First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]
CROSSREFS
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).
Sequence in context: A095243 A049921 A191628 * A261999 A360701 A216829
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Oct 09 2024
STATUS
approved