login
A376912
Decimal expansion of Product_{k=1..7} Gamma(k/3).
3
3, 4, 8, 1, 8, 1, 9, 0, 6, 8, 6, 2, 8, 7, 3, 5, 9, 3, 9, 5, 9, 8, 9, 5, 2, 0, 6, 2, 9, 2, 2, 7, 4, 2, 2, 8, 8, 0, 0, 7, 3, 3, 6, 8, 0, 9, 8, 1, 9, 7, 4, 7, 2, 6, 8, 7, 7, 5, 6, 3, 6, 2, 8, 9, 2, 7, 9, 4, 8, 9, 3, 0, 6, 8, 3, 9, 9, 4, 6, 5, 2, 6, 8, 2, 8, 0, 4, 8, 0, 3
OFFSET
1,1
FORMULA
Equals (32/243)*Pi^2*Gamma(1/3) = (32/243)*A002388*A073005 (cf. eq. 89 in Weisstein link).
EXAMPLE
3.4818190686287359395989520629227422880073368098...
MATHEMATICA
First[RealDigits[32/243*Pi^2*Gamma[1/3], 10, 100]]
CROSSREFS
Cf. A002388.
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376913 (m = 8).
Sequence in context: A270107 A100231 A016609 * A346411 A199618 A088745
KEYWORD
nonn,cons
AUTHOR
Paolo Xausa, Oct 11 2024
STATUS
approved