%I #5 Oct 12 2024 03:52:13
%S 3,4,8,1,8,1,9,0,6,8,6,2,8,7,3,5,9,3,9,5,9,8,9,5,2,0,6,2,9,2,2,7,4,2,
%T 2,8,8,0,0,7,3,3,6,8,0,9,8,1,9,7,4,7,2,6,8,7,7,5,6,3,6,2,8,9,2,7,9,4,
%U 8,9,3,0,6,8,3,9,9,4,6,5,2,6,8,2,8,0,4,8,0,3
%N Decimal expansion of Product_{k=1..7} Gamma(k/3).
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>.
%H <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>.
%F Equals (32/243)*Pi^2*Gamma(1/3) = (32/243)*A002388*A073005 (cf. eq. 89 in Weisstein link).
%e 3.4818190686287359395989520629227422880073368098...
%t First[RealDigits[32/243*Pi^2*Gamma[1/3], 10, 100]]
%Y Cf. A002388.
%Y Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376913 (m = 8).
%K nonn,cons
%O 1,1
%A _Paolo Xausa_, Oct 11 2024