login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376914
Values k for primitive solutions to k^5 + a^5 + b^5 + c^5 = d^5 + e^5 with k >= a >= b >= c > 0 and d >= e >= 0, repetitions allowed.
2
28, 37, 50, 63, 82, 86, 94, 99, 100, 102, 104, 112, 114, 129, 130, 133, 135, 137, 156, 172, 174, 184, 191, 196, 200, 213, 221, 236, 237, 241, 252, 258, 260, 270, 271, 279, 282, 291, 291, 291
OFFSET
1,1
COMMENTS
Primitive means a solution has gcd(k,a,b,c,d,e) = 1.
In most of cases d > k.
This case is known in literature as 5.2.4 (see e.g. Eric Weisstein's World of Mathematics).
LINKS
Andrew Howroyd, Solutions for k <= 300, Oct 2024.
Eric Weisstein's World of Mathematics, Diophantine Equation-5th Powers.
EXAMPLE
28^5 + 20^5 + 10^5 + 4^5 = 29^5 + 3^5 so 28 is a term.
133^5 + 110^5 + 84^5 + 27^5 = 144^5 + 0^5 so 133 is a term.
291^5 + 109^5 + 31^5 + 29^5 = 287^5 + 173^5 and 291^5 + 279^5 + 108^5 + 85^5 = 328^5 + 15^5 and 291^5 + 287^5 + 205^5 + 174^5 = 335^5 + 202^5 so 291 is included three times.
MATHEMATICA
aa = {}; Monitor[Do[Do[Do[Do[kk = PowersRepresentations[k^5 + a^5 + b^5 + c^5, 2, 5]; If[kk != {}, If[GCD[k, a, b, c, kk[[1]][[1]], kk[[1]][[2]]]==1, Print[{k, a, b, c, kk}]; AppendTo[aa, k]]], {c, 1, b}], {b, 1, a}], {a, 1, k}], {k, 1, 200}], {a, k}]; aa
PROG
(PARI) lista(maxk, mink=1, prfull=0)={for(k=mink, maxk, for(a=1, k, for(b=1, a, for(c=1, b, my(s=k^5+a^5+b^5+c^5); for(d=sqrtnint((s-1)\2, 5)+1, sqrtnint(s, 5), my(e); if(ispower(s-d^5, 5, &e) && gcd([k, a, b, c, d, e])==1, if(prfull, print([k, a, b, c, d, e]), print1(k, ", ") )) )))))} \\ Andrew Howroyd, Oct 09 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Oct 09 2024
EXTENSIONS
a(26)-a(40) from Andrew Howroyd, Oct 09 2024
STATUS
approved