login
A376861
Numbers with a composite number of prime factors and a composite number of distinct prime factors.
0
210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 840, 858, 870, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1260, 1290, 1302, 1320, 1326, 1330, 1365, 1410, 1430, 1482, 1518, 1554, 1560, 1590, 1610, 1722, 1770, 1785, 1794, 1806, 1830, 1848, 1870, 1890, 1914, 1938, 1974, 1980, 1995
OFFSET
1,1
FORMULA
{k | A001221(k) in A002808 and A001222(k) in A002808}. - Michael S. Branicky, Feb 07 2025
EXAMPLE
840 is a term since 840 = 2 * 2 * 2 * 3 * 5 * 7 has 6 prime factors and 4 distinct prime factors, and both 6 and 4 are composite.
MATHEMATICA
Select[Range[2000], CompositeQ[PrimeOmega[#]]&&CompositeQ[PrimeNu[#]]&] (* James C. McMahon, Feb 13 2025 *)
PROG
(Python)
from sympy import factorint, isprime
def ok(n):
f = factorint(n)
w, W = len(f), sum(e for e in f.values())
return w > 3 and W > 3 and not isprime(w) and not isprime(W)
print([k for k in range(1, 2000) if ok(k)]) # Michael S. Branicky, Feb 07 2025
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Marc Morgenegg, Feb 05 2025
STATUS
approved