login
A281334
Triangle read by rows: T(n, k) = (n - k)*(k + 1)^3 + k, 0 <= k <= n.
2
0, 1, 1, 2, 9, 2, 3, 17, 29, 3, 4, 25, 56, 67, 4, 5, 33, 83, 131, 129, 5, 6, 41, 110, 195, 254, 221, 6, 7, 49, 137, 259, 379, 437, 349, 7, 8, 57, 164, 323, 504, 653, 692, 519, 8, 9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9, 10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10
OFFSET
1,4
FORMULA
Row sums sum_{k>=0} T(n,k) = n*(n+1)*(3*n^3+12*n^2+13*n+32)/60. - R. J. Mathar, Mar 19 2017
EXAMPLE
Triangle begins:
0;
1, 1;
2, 9, 2;
3, 17, 29, 3;
4, 25, 56, 67, 4;
5, 33, 83, 131, 129, 5;
6, 41, 110, 195, 254, 221, 6;
7, 49, 137, 259, 379, 437, 349, 7;
8, 57, 164, 323, 504, 653, 692, 519, 8;
9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9;
10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10;
...
MATHEMATICA
t[n_, k_] := (n - k)*(k + 1)^3 + k; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Feb 09 2017 *)
PROG
(Magma) /* As triangle */ [[(n-k)*(k+1)^3+k: k in [1..n]]: n in [0..10]];
(PARI) for(n=0, 10, for(k=0, n, print1((n-k)*(k+1)^3+k, ", "))) \\ Derek Orr, Feb 26 2017
CROSSREFS
Cf. Triangle read by rows: T(n,k) = (n-k)*(k+1)^m+k: A003056 (m = 0), A059036 (m = 1), A274602 (m = 2), this sequence (m = 3).
Cf. A001477 (column 0), A017077 (column 1), A281546 (column 2), A242604 (middle diagonal).
Sequence in context: A121602 A011324 A021346 * A010597 A245253 A376911
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved