login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n. 1
0, 1, 1, 2, 5, 2, 3, 11, 9, 3, 4, 19, 20, 13, 4, 5, 29, 35, 29, 17, 5, 6, 41, 54, 51, 38, 21, 6, 7, 55, 77, 79, 67, 47, 25, 7, 8, 71, 104, 113, 104, 83, 56, 29, 8, 9, 89, 135, 153, 149, 129, 99, 65, 33, 9, 10, 109, 170, 199, 202, 185, 154, 115, 74, 37, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:
0
1 1
2 5 2
3 9 11 3
4 13 20 19 4
5 17 29 35 29 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 11 19 29 41 A028387
2 9 20 35 54 77 A014107
3 13 29 51 79 113 A144391
4 17 38 67 104 149 A182868
5 21 47 83 129 185
LINKS
EXAMPLE
0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...
As an infinite triangular array:
0
1 1
2 5 2
3 11 9 3
4 19 20 13 4
5 29 35 29 17 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 9 13 17 21 A016813
2 11 20 29 38 47 A017185
3 19 35 51 67 83
4 29 54 79 104 129
5 41 77 113 149 185
MATHEMATICA
Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 02 2016 *)
PROG
(Magma) /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];
CROSSREFS
Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).
Sequence in context: A083381 A197180 A129396 * A153289 A161643 A196982
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 09:41 EDT 2024. Contains 373674 sequences. (Running on oeis4.)