login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.
1

%I #36 Sep 08 2022 08:46:17

%S 0,1,1,2,5,2,3,11,9,3,4,19,20,13,4,5,29,35,29,17,5,6,41,54,51,38,21,6,

%T 7,55,77,79,67,47,25,7,8,71,104,113,104,83,56,29,8,9,89,135,153,149,

%U 129,99,65,33,9,10,109,170,199,202,185,154,115,74,37,10

%N Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.

%C Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:

%C 0

%C 1 1

%C 2 5 2

%C 3 9 11 3

%C 4 13 20 19 4

%C 5 17 29 35 29 5

%C As an infinite square array (matrix) with comments:

%C 0 1 2 3 4 5 A001477

%C 1 5 11 19 29 41 A028387

%C 2 9 20 35 54 77 A014107

%C 3 13 29 51 79 113 A144391

%C 4 17 38 67 104 149 A182868

%C 5 21 47 83 129 185

%e 0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...

%e As an infinite triangular array:

%e 0

%e 1 1

%e 2 5 2

%e 3 11 9 3

%e 4 19 20 13 4

%e 5 29 35 29 17 5

%e As an infinite square array (matrix) with comments:

%e 0 1 2 3 4 5 A001477

%e 1 5 9 13 17 21 A016813

%e 2 11 20 29 38 47 A017185

%e 3 19 35 51 67 83

%e 4 29 54 79 104 129

%e 5 41 77 113 149 185

%t Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 02 2016 *)

%o (Magma) /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];

%Y Cf. A002064, A001477, A016813, A017185, A062158 (central column). A028387, A014107, A144391, A182868.

%Y Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).

%K nonn,tabl

%O 1,4

%A _Juri-Stepan Gerasimov_, Dec 01 2016