|
|
A182868
|
|
a(n) = -1 + n + 4*n^2.
|
|
2
|
|
|
-1, 4, 17, 38, 67, 104, 149, 202, 263, 332, 409, 494, 587, 688, 797, 914, 1039, 1172, 1313, 1462, 1619, 1784, 1957, 2138, 2327, 2524, 2729, 2942, 3163, 3392, 3629, 3874, 4127, 4388, 4657, 4934, 5219, 5512, 5813, 6122, 6439, 6764, 7097, 7438, 7787, 8144, 8509, 8882, 9263, 9652
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
First quadrisection of A176126(n). Take clockwise (square) spiral from A023443(n)=n-1: a(n) is on the negative x-axis. Fourth quadrisection (-1-n+4*n^2) is on the negative y-axis.
a(n) mod 9 has period 9: 8,4,8,2,4,5,5,4,2. a(n) mod 10 has period 10: 9,4,7,8,7,4,9,2,3,2. Each polynomial modulo some constant c has a period of length c (and perhaps shorter ones). - Paul Curtz and Bruno Berselli, Feb 05 2011
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 4*n^2 + n - 1.
a(n) = a(n-1) - 3 + 8*n.
a(n) = 2*a(n) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|