login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214869
Decimal expansion of Sum_{n >= 1} n!/(2*n)!.
7
5, 9, 2, 2, 9, 6, 5, 3, 6, 4, 6, 9, 3, 2, 6, 5, 7, 5, 6, 6, 0, 4, 1, 5, 0, 5, 4, 5, 3, 9, 0, 6, 2, 6, 8, 7, 2, 8, 4, 6, 1, 6, 6, 1, 2, 2, 1, 6, 9, 8, 7, 1, 0, 3, 7, 7, 5, 6, 8, 5, 8, 3, 6, 5, 3, 2, 0, 3, 6, 7, 9, 6, 1, 6, 6, 5, 0, 7, 5, 5, 7, 0, 2, 7, 2, 4, 4, 3, 5, 1, 5, 7, 5, 0, 7, 6, 1, 0, 4, 2, 5, 5, 3, 5, 3
OFFSET
0,1
COMMENTS
Equivalent to: 1/2 e^(1/4) Pi^(1/2) erf(1/2) where erf(1/2) is error function.
LINKS
J.-P. Allouche and T. Baruchel, Variations on an error sum function for the convergents of some powers of e, arXiv preprint arXiv:1408.2206 [math.NT], 2014.
Eric Weisstein's World of Mathematics, Erf
EXAMPLE
0.5922965364693265756604150545390626872846166122169...
MAPLE
evalf(1/2*exp(1/4)*Pi^(1/2)*erf(1/2), 120) # Vaclav Kotesovec, Oct 16 2014
MATHEMATICA
NSum[n!/(2 n)!, {n, 1, Infinity}, WorkingPrecision -> 105]
RealDigits[1/2*E^(1/4)*Sqrt[Pi]*Erf[1/2], 10, 105][[1]] (* Jean-François Alcover, Feb 20 2014 *)
PROG
(PARI) /* needs GP version >= 2.6 */
N=200;
default(realprecision, N+10);
s=suminf(n=1, n!/(2*n)!);
digits( floor( 10^N*s ), 10 )
/* Joerg Arndt, Mar 11 2013 */
CROSSREFS
Sequence in context: A346044 A334402 A227574 * A021632 A248191 A323985
KEYWORD
nonn,cons
AUTHOR
Fred Daniel Kline, Mar 11 2013
STATUS
approved