login
A248697
Primes of the form k+(k+3)^2 where k is a nonnegative integer.
2
17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347
OFFSET
1,1
COMMENTS
Primes > 3 in A014209. - Klaus Purath, Dec 10 2020
MAPLE
A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014
MATHEMATICA
f[x_] := x + (x + 3)^2;
n = 50; result = {}; counter = 0; number = 0;
While[counter < n,
value = f[number];
If[PrimeQ[value] == True, AppendTo[result, value]; counter = counter + 1];
number = number + 1]; result
Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)
PROG
(Magma) [a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014
(PARI) for(n=1, 10^3, if(isprime(n^2+7*n+9), print1(n^2+7*n+9, ", "))) \\ Derek Orr, Oct 12 2014
CROSSREFS
Cf. A014209.
Sequence in context: A044500 A142105 A031383 * A180456 A154409 A033213
KEYWORD
nonn,easy
AUTHOR
Michael Savoric, Oct 11 2014
STATUS
approved