login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248697 Primes of the form k+(k+3)^2 where k is a nonnegative integer. 1
17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..50.

MAPLE

A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014

MATHEMATICA

f[x_] := x + (x + 3)^2;

n = 50; result = {}; counter = 0; number = 0;

While[counter < n,

value = f[number];

If[PrimeQ[value] == True, AppendTo[result, value]; counter = counter + 1];

number = number + 1]; result

Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)

PROG

(MAGMA) [a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014

(PARI) for(n=1, 10^3, if(isprime(n^2+7*n+9), print1(n^2+7*n+9, ", "))) \\ Derek Orr, Oct 12 2014

CROSSREFS

Sequence in context: A044500 A142105 A031383 * A180456 A154409 A033213

Adjacent sequences:  A248694 A248695 A248696 * A248698 A248699 A248700

KEYWORD

nonn,easy

AUTHOR

Michael Savoric, Oct 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 09:10 EST 2020. Contains 338623 sequences. (Running on oeis4.)