login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248696 Decimal expansion of sum_{n >= 1} (2n)!/(1!*2!*...*n!). 5
3, 3, 8, 9, 4, 9, 2, 8, 0, 1, 0, 9, 8, 9, 4, 2, 4, 2, 9, 7, 4, 5, 0, 7, 2, 3, 5, 0, 4, 8, 8, 6, 9, 7, 6, 8, 1, 1, 2, 5, 5, 2, 3, 0, 4, 2, 5, 0, 6, 4, 7, 4, 4, 9, 1, 6, 1, 2, 4, 9, 3, 0, 2, 1, 2, 6, 1, 4, 5, 1, 3, 6, 7, 4, 4, 4, 0, 0, 5, 4, 9, 7, 7, 4, 2, 9, 2, 3, 6, 5, 3, 3, 6, 3, 3, 7, 0, 9, 6, 5, 6, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

Let t(n) = (2n)!/(1!*2!*...*n!). Then t(n) is an integer for n = 1..5, and max{t(n), n >= 1} = t(4) = 140... . It appears that t(n) < 10^(-6) for n > 9.

LINKS

Table of n, a(n) for n=3..105.

EXAMPLE

338.9492801098942429745072350488697681125523042506474491612493021261451367444...

MAPLE

evalf(sum((2*n)!/product(k!, k=1..n), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014

MATHEMATICA

u = N[Sum[(2 n)!/Product[k!, {k, 1, n}], {n, 1, 300}], 120]

RealDigits[u]  (* A248696 *)

NSum[(2 n)!/BarnesG[n+2], {n, 1, Infinity}, WorkingPrecision -> 103] // RealDigits // First (* Jean-François Alcover, Nov 19 2015 *)

PROG

(PARI) suminf(n=1, (2*n)!/prod(k=1, n, k!)) \\ Michel Marcus, Oct 19 2014

CROSSREFS

Cf. A214869, A248695.

Sequence in context: A336102 A094966 A095068 * A021299 A141678 A231855

Adjacent sequences:  A248693 A248694 A248695 * A248697 A248698 A248699

KEYWORD

nonn,easy,cons

AUTHOR

Clark Kimberling, Oct 13 2014

EXTENSIONS

More digits from Jean-François Alcover, Nov 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 16:50 EDT 2021. Contains 347586 sequences. (Running on oeis4.)