login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141678
Symmetrical triangle of coefficients based on invert transform of A001906.
1
1, 3, 3, 8, 9, 8, 21, 24, 24, 21, 55, 63, 64, 63, 55, 144, 165, 168, 168, 165, 144, 377, 432, 440, 441, 440, 432, 377, 987, 1131, 1152, 1155, 1155, 1152, 1131, 987, 2584, 2961, 3016, 3024, 3025, 3024, 3016, 2961, 2584, 6765, 7752, 7896, 7917, 7920, 7920, 7917, 7896, 7752, 6765
OFFSET
1,2
COMMENTS
Row sums are {1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, ...}.
It can be noticed that the interior of the triangle is relatively "flat", which is a smaller variation than in most symmetrical triangles of this type.
16*T(n,k) is the number of Boolean (equivalently, lattice, modular lattice, distributive lattice) intervals of the form [s_{k+1},w] in the Bruhat order on S_{n+3}, for the simple reflection s_{k+1}. - Bridget Tenner, Jan 16 2020
LINKS
Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
FORMULA
Let b(n) = Sum_{k=1..n} k*b(n - k), then T(n, m) = b(n-m+1)*b(m+1).
Alternatively, let f(n) = Fibonacci(2*n) with f(0)=1, then T(n, k) = f(n-k+1)*f(k+1). - G. C. Greubel, Apr 06 2019
EXAMPLE
Triangle begins as:
1;
3, 3;
8, 9, 8;
21, 24, 24, 21;
55, 63, 64, 63, 55;
144, 165, 168, 168, 165, 144;
377, 432, 440, 441, 440, 432, 377; ...
MATHEMATICA
b[0]=1; b[n_]:= Sum[k*b[n-k], {k, 1, n}];
Table[b[n-m+1]*b[m+1], {n, 0, 10}, {m, 0, n}]//Flatten
f[n_]:= If[n == 0, 1, Fibonacci[2*n]]; Table[f[n-k+1]*f[k+1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2019 *)
PROG
(PARI) {b(n) = if(n==0, 1, fibonacci(2*n))};
for(n=0, 10, for(k=0, n, print1(b(n-k+1)*b(k+1), ", "))) \\ G. C. Greubel, Apr 06 2019
(Magma) b:= func< n| n eq 0 select 1 else Fibonacci(2*n) >; [[b(n-k+1)*b(k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 06 2019
(Sage)
@CachedFunction
def b(n):
if n==0: return 1
return fibonacci(2*n)
[[b(n-k+1)*b(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 06 2019
CROSSREFS
Cf. A001906.
Sequence in context: A095068 A248696 A021299 * A231855 A368738 A135477
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Apr 02 2019
STATUS
approved