OFFSET
1,1
COMMENTS
The row sums are {1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, ...}.
The inverse is a tridiagonal lower triangular matrix.
LINKS
G. C. Greubel, Rows n=1..100 of triangle, flattened
FORMULA
EXAMPLE
{1},
{-1, 1},
{-1, -1, 1},
{0, -1, -1, 1},
{0, 0, -1, -1, 1},
{0, 0,0, -1, -1, 1},
{0, 0, 0, 0, -1, -1, 1},
{0, 0, 0, 0, 0, -1, -1, 1},
{0, 0, 0, 0, 0, 0, -1, -1, 1},
{0, 0, 0, 0, 0, 0, 0, -1, -1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1}
MATHEMATICA
Clear[t, n, m, M] (*A058071*) t[n_, m_] = If[m <= n, Fibonacci[n - m + 1]*Fibonacci[m + 1], 0]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]; M = Inverse[Table[Table[t[n, m], {m, 0, 10}], {n, 0, 10}]]; Table[Table[Fibonacci[n]*M[[n, m]], {m, 1, n}], {n, 1, 11}]; Flatten[%]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 07 2008
EXTENSIONS
Edited by N. J. A. Sloane, Jan 05 2009
STATUS
approved