The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276254 With respect to the dictionary ordering of words over the alphabet {a,b}, i.e., e,a,b,aa,ab,ba,bb,aaa,..., the sequence is the characteristic function of the language of words that have no consecutive b's. 1
 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 REFERENCES R. G. Underwood, Fundamentals of Hopf Algebras, UTX, Springer, 2015, page 61. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..16383 Robert G. Underwood,A Class of Automatic Sequences , arXiv preprint arXiv:1712.10259, 2017 FORMULA a(n) = 0 iff A007931(n) contains two (or more) consecutive 2's. - Alois P. Heinz, Aug 26 2016 MAPLE a:= proc(n) local m, r, d; m, r:= n, 1;       while m>0 do d:= irem(m, 2, 'm');         if d=0 then if r=0 then return 0 fi;           m:= m-1 fi; r:=d;       od; 1     end: seq(a(n), n=0..200);  # Alois P. Heinz, Aug 25 2016 MATHEMATICA a[n_] := Module[{m, r, d}, {m, r} = {n, 1}; While[m > 0, {m, d} = QuotientRemainder[m, 2]; If[d == 0, If[r == 0, Return[0]]; m = m-1]; r = d]; 1]; Table[a[n], {n, 0, 200}] (* Jean-François Alcover, Mar 24 2018, after Alois P. Heinz *) CROSSREFS Cf. A007931. Sequence in context: A327866 A190230 A141679 * A303300 A249865 A152904 Adjacent sequences:  A276251 A276252 A276253 * A276255 A276256 A276257 KEYWORD nonn AUTHOR Robert G. Underwood, Aug 25 2016 EXTENSIONS More terms from Alois P. Heinz, Aug 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 14:24 EDT 2020. Contains 333151 sequences. (Running on oeis4.)