login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190230
a(n) = [n*u + n*v] - [n*u] - [n*v], where u=sin(2*Pi/5), v=cos(2*Pi/5), and []=floor.
3
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1
OFFSET
1
LINKS
MATHEMATICA
u = Sin[2Pi/5]; v = Cos[2Pi/5];
f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v]
t = Table[f[n], {n, 1, 120}] (* A190230 *)
Flatten[Position[t, 0]] (* A190231 *)
Flatten[Position[t, 1]] (* A190232 *)
PROG
(PARI) for(n=1, 30, print1(floor(n*(sin(Pi/5) + cos(Pi/5))) - floor(n*cos(Pi/5)) - floor(n*sin(Pi/5)), ", ")) \\ G. C. Greubel, Dec 27 2017
(Magma) C<i> := ComplexField(); [Floor(n*(Sin(Pi(C)/5) + Cos(Pi(C)/5))) - Floor(n*Sin(Pi(C)/5)) - Floor(n*Cos(Pi(C)/5)): n in [1..30]]; // G. C. Greubel, Dec 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved