OFFSET
1
COMMENTS
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened).
Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
Eric Weisstein's World of Mathematics, Rule 30.
EXAMPLE
The following diagram illustrates how the array is built.
.
1 Diagonals from the left of rule-30 CA
\ are the same as diagonals from the right
1 1 1 of rule-86 CA, shown here.
\ \ \
1 0 0 1 1
\ \ \ \ \
1 1 1 1 0 1 1
\ \ \ \ \ \
1 0 0 0 1 0 0 1 1
\ \ \ \ \ \
1 1 1 0 1 1 1 1 0 1 1 Array begins:
\ \ \ \ \ \___ 1 1 1 1 1 1 1 1 1 1 1 1 ... (period 1)
... \ \ \ \ \____ 1 1 1 1 1 1 1 1 1 1 1 1 ... (period 1)
\ \ \ \_____ 1 0 0 0 0 0 0 0 0 0 0 0 ... (period 1)
\ \ \______ 0 1 0 1 0 1 0 1 0 1 0 1 ... (period 2)
\ \_______ 1 1 1 1 1 1 1 1 1 1 1 1 ... (period 1)
\________ 1 0 1 0 1 0 1 0 1 0 1 0 ... (period 2)
...
MATHEMATICA
A363344list[dmax_]:=Module[{ca=CellularAutomaton[86, {{1}, 0}, dmax-1], a}, a=Array[Drop[Diagonal[ca, #], Floor[(dmax-#)/2]]&, dmax, 0]; Array[Diagonal[a, #]&, dmax, 1-dmax]]; A363344list[15] (* Generates 15 antidiagonals *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paolo Xausa, May 28 2023
STATUS
approved