OFFSET
1,4
COMMENTS
Diagonals from the left of rule-30 cellular automaton are eventually periodic, after an initial transient phase (A363346).
As noted by Wolfram (2002), "Each period doubling turns out to occur exactly when a diagonal in the pattern eventually becomes a white stripe, and the diagonal to its left has an odd number of black cells in each repeating block." See Rowland (2006), p. 256 for a proof of this observation.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000
Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
Eric Weisstein's World of Mathematics, Rule 30.
Stephen Wolfram, Notes on Chapter 2, Rule 30, from A New Kind of Science Online, Wolfram Media, 2002.
EXAMPLE
In the following diagram, showing the first 22 evolution steps of the CA, three diagonals are highlighted, along with their transient and periodic parts (the rest of the CA is represented by hyphens, for better visualization).
.
3rd diagonal
__ Transient = 1
- / Repeat = 0
--1 a(3) = 1
--0--
--0---- 12th diagonal
--0------ __ Transient = 01
--0--------/ Repeat = 0010
--0--------0- a(12) = 4
--0--------1---
--0--------0----- __ 20th diagonal
--0--------0-------/ Transient = 01000101
--0--------1-------0- Repeat = 1100
--0--------0-------1--- a(20) = 4
--0--------0-------0-----
--0--------0-------0-------
--0--------1-------0---------
--0--------0-------1-----------
--0--------0-------0-------------
--0--------0-------1---------------
--0--------1-------1-----------------
--0--------0-------1-------------------
--0--------0-------0---------------------
--0--------0-------0-----------------------
--0--------1-------1-------------------------
.
MATHEMATICA
A363345list[nmax_]:=With[{ca=CellularAutomaton[86, {{1}, 0}, {{2nmax, 3nmax-1}, {nmax+1, 2nmax}}]}, Array[Length[FindRepeat[Diagonal[ca, nmax-#]]]&, nmax]]; A363345list[200] (* Modified by Paolo Xausa, Aug 15 2023 *)
PROG
(Python) # See Brunnbauer link, Appendix 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Xausa, May 28 2023
STATUS
approved