OFFSET
1
COMMENTS
Diagonals from the right are periodic, with periods (A094605) being a power of 2 and doubling at apparently non-predictable intervals.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened).
Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
Eric Weisstein's World of Mathematics, Rule 30.
EXAMPLE
The following diagram illustrates how the array is built.
.
1
\
1 1 1
\ \ \
1 1 0 0 1
\ \ \ \ \
1 1 0 1 1 1 1
\ \ \ \ \ \
1 1 0 0 1 0 0 0 1
\ \ \ \ \ \
1 1 0 1 1 1 1 0 1 1 1 Array begins:
\ \ \ \ \ \___ 1 1 1 1 1 1 1 1 1 1 1 1 ... (period 1)
... \ \ \ \ \____ 1 0 1 0 1 0 1 0 1 0 1 0 ... (period 2)
\ \ \ \_____ 1 0 1 0 1 0 1 0 1 0 1 0 ... (period 2)
\ \ \______ 1 1 0 0 1 1 0 0 1 1 0 0 ... (period 4)
\ \_______ 1 0 1 1 0 1 0 0 1 0 1 1 ... (period 8)
\________ 1 0 1 0 1 0 0 0 1 0 1 0 ... (period 8)
...
MATHEMATICA
A363343list[dmax_]:=Module[{ca=CellularAutomaton[30, {{1}, 0}, dmax-1], a}, a=Array[Drop[Diagonal[ca, #], Floor[(dmax-#)/2]]&, dmax, 0]; Array[Diagonal[a, #]&, dmax, 1-dmax]]; A363343list[15] (* Generates 15 antidiagonals *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paolo Xausa, May 28 2023
STATUS
approved