login
A363343
Array read by ascending antidiagonals: T(n,k) is the value of the k-th cell on the n-th diagonal from the right of rule-30 1-D cellular automaton, when started from a single ON cell, with n, k >= 1.
6
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
Diagonals from the right are periodic, with periods (A094605) being a power of 2 and doubling at apparently non-predictable intervals.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened).
Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
Eric Weisstein's World of Mathematics, Rule 30.
EXAMPLE
The following diagram illustrates how the array is built.
.
1
\
1 1 1
\ \ \
1 1 0 0 1
\ \ \ \ \
1 1 0 1 1 1 1
\ \ \ \ \ \
1 1 0 0 1 0 0 0 1
\ \ \ \ \ \
1 1 0 1 1 1 1 0 1 1 1 Array begins:
\ \ \ \ \ \___ 1 1 1 1 1 1 1 1 1 1 1 1 ... (period 1)
... \ \ \ \ \____ 1 0 1 0 1 0 1 0 1 0 1 0 ... (period 2)
\ \ \ \_____ 1 0 1 0 1 0 1 0 1 0 1 0 ... (period 2)
\ \ \______ 1 1 0 0 1 1 0 0 1 1 0 0 ... (period 4)
\ \_______ 1 0 1 1 0 1 0 0 1 0 1 1 ... (period 8)
\________ 1 0 1 0 1 0 0 0 1 0 1 0 ... (period 8)
...
MATHEMATICA
A363343list[dmax_]:=Module[{ca=CellularAutomaton[30, {{1}, 0}, dmax-1], a}, a=Array[Drop[Diagonal[ca, #], Floor[(dmax-#)/2]]&, dmax, 0]; Array[Diagonal[a, #]&, dmax, 1-dmax]]; A363343list[15] (* Generates 15 antidiagonals *)
CROSSREFS
Cf. A070950.
Cf. A094605 (periods of diagonals), A363344 (diagonals from the left).
Sequence in context: A070909 A115954 A115526 * A336923 A239681 A054524
KEYWORD
nonn,tabl
AUTHOR
Paolo Xausa, May 28 2023
STATUS
approved